We’ve detected that you are using an outdated browser. This will prevent you from accessing certain features. Update browser

oil & gas

Stopping a costly, noisy problem for Statoil.

Noise investigation, flow stimulation and new, custom-built component solution

Key facts

  • 01.



  • 02.


    Main Generator A gas turbine, Åsgard B platform

  • 03.


    Norwegian Sea

Client challenge

After a gas turbine overhaul, excessive noise levels were detected on the Main Generator A gas turbine exhaust duct on Statoil’s Åsgard B platform. The levels exceeded HSE recommendations and the operation of Main Generator A had to be avoided. As a stopgap measure, our client regulated its Main Generator B to manage full operation. This came with penalties, as the temporary solution meant larger NOx emission. Statoil needed to get Generator A back up and running swiftly. We were asked to investigate the noise source and solve the problem, so operation could resume as normal.

How we helped

In three key ways.

Initial noise investigation

For clear identification of the main noise contributor, we first performed a number of noise measurements. We found that the main cause for the increased noise level was a sharp tonal frequency component close to 800 Hz. As this component only appeared for certain openings of the CDP bleed valve, we established that the noise was linked to the bleed flow. At certain part-load operating conditions, LM2500+ DLE gas turbines use continuous bleed-off flow after the last compressor stage. On the Main Generator A exhaust collector, the bleed flow was introduced into the exhaust duct inside the exhaust collector in vicinity of the lower flow enhancer guide vane.

Because the Main Generator A gas turbine had been upgraded, it was suspected that the bleed flow rates had now increased beyond a threshold level, which had triggered the excessive noise levels. We developed the hypothesis that the noise was caused by a screech-like unstable interaction inside the exhaust collector.

Simulating the flow

To describe the flow inside the gas turbine exhaust duct, we initiated a flow analysis. Based on computational fluid dynamics (CFD), we simulated the bleed flow and its interaction with the exhaust collector flow. The simulation revealed that problematic flow features were present near the lower tip of the flow enhancer guide vane. A portion of the flow was passing below the tip of the lower vane; a shape similar to the tip of a whistle or flute. We found that unstable supersonic flows were present in this region (higher than Mach 3), with marked fluctuations in the frequency range around the tonal noise frequency. From experience, we know that the encounter between very high Mach numbers and a sharp edge is very likely to generate excessive noise. We concluded that this was the source of the problem.

Solving the problem

This meant guiding the bleed flow away from the bottom of the exhaust collector. To that end, we adapted a bleed distributor concept recently developed in collaboration with specialist Mjørud for a similar project. The conceptual design was customised to solve the problem at hand in close cooperation with Statoil. The new, custom-built bleed distributor was based on four layers of perforated plates. These would break up the flow into thousands of small jet flows and separate the flow domains.


The bleed flow distributor fundamentally changed the flow. The new component averted the interaction of the supersonic flow out of the bleed pipe with the lower flow enhancer guide vane.

Business benefits

By mounting the custom-built bleed flow distributor, we were able to guide the bleed flow away from the bottom of the exhaust collector. The excessive noise levels were relieved and Main Generator A gas turbine was back up and running, saving significant amounts in costly penalties.


Want to know more?


What we think

LR's experts regularly share their research and insights.

Can't find what you are looking for?

Hit enter or the arrow to search Hit enter to search

Search icon

Are you looking for?