We’ve detected that you are using an outdated browser. This will prevent you from accessing certain features. Update browser

Phillips 66

Data analytics to detect pipeline faults.

Pipeline Monitoring

The Challenge

Pipelines safely and economically transport liquid and gas through a system of pipes, typically across long distances, supporting our modern living standard. Over time, pipelines are subject to a variety of integrity threats, from corrosion, to dents, to gauging. In order to identify and understand these threats, In Line Inspection (ILI) tools also known as ‘pigs’ are widely-used to scan the pipe’s interior, measuring and recording irregularities including corrosion, cracks, deformations, or other defects. The amount of ILI data is however immense and dealing with this data from a fitness-for-service point of view poses a significant challenge to the industry, resulting in inaccuracies and uncertainties of the depth, size and location of the pipe wall. Similarly, defects are often identified, yet classified generically, which can be problematic, leading to incorrect dig and repair prioritisations.

This Challenge, set in conjunction with Phillips 66, the US energy manufacturing and logistics company, seeks innovative IoT, machine learning and AI solutions to more effectively identify anomalies from the immense ILI data sets. The solution should be capable of processing both raw ILI and historical incident data, to identify pipeline integrity threats with higher accuracy, reducing the risk of pipeline leaks and major incidents.

Take a look back at our previous safety and risk challenges.

Hit enter or the arrow to search Hit enter to search

Search icon

Are you looking for?